

Fundamentals and Innovations Of

Army Energy Conversion Systems

Symposium on EnergyConversion Fundamentals

Istanbul, Turkey June 21-25, 2004

Dr. C. I. Chang
Director
US Army Research Office

maintaining the data needed, and c including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 24 JUN 2004		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Fundamentals and	on Systems	5b. GRANT NUMBER				
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					5d. PROJECT NUMBER	
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Office				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
	OTES 93, International Sy une 2005., The origi			ndamentals H	leld in Istanbul,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 33	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

Overview of Army Basic Research

Challenges for Army Energy Conversion

Initiatives in Energy Conversion

- Compact Power
- Vehicle Propulsion
- Weapons Propulsion

Summary

Army Basic Research Pursuits

Mathematical Sciences

- Knowledge-based systems
- Intelligent systems
- Complex systems and control

Chemical Sciences

- Electrochemistry
- Fast, energetic materials
- Dendritic polymers

Mechanical Sciences

- "Smart" structures
- Rotorcraft aeromechanics
- Combustion/Propulsion

Communications & Information Processing Research

- Information fusion
- Wireless distributed communications
- MMW integrated devices

• Portable power

- Low power
- Intelligent
- Microsized
- Multifunctional
- Autonomous
- Lightweight
- Logistics ease

Biological Sciences

- Microbiology & Biodegradation
- Physiology & Performance
- Nanoscale biomechanics

Physics

- Image analysis
- Nanoscience
- Photonics

Materials Science

- Biomimetics
- Hierarchical materials
- Smart materials

Atmospheric and Terrestrial Sciences

- Atmospheric aerosol transport
- Geomorphology
- Remote sensing

Electronics

- Low power/noise electronics
- Optoelectronic hybrids
- Quantum & High Frequency Electronics

Distribution of Research Funds Managed by ARO

Challenges for Army Energy Conversion:

Mission Complexity

Force Transformation

Objective Force for Full Spectrum of Missions

Complexity Urban

Environmental

High

Open rolling terrain

Low

Stability and Support
Operations

Small Scale Contingencies

Major Theater War

Increased strategic responsiveness

- ✓ Brigade in 96 hrs; Division in 120 hrs; Five Divisions in 30 days
- ✓ Fight immediately upon arrival
- ✓ Simultaneous air and sea lift
- ✓ Anti-terrorism

Spectrum of Conflict

Capabilities for an Uncertain Future:

Current and future armies have a wider range of problems to solve

A Revolution in Capabilities ... Smaller, Lighter & Faster

Objective Force

 $\sim 100 lb$. load

Fit the C-130 "Crucible"

< 30 lb.effective load

70+ tons

0 mph

> 40 mph

Compact Power for the Dismounted Soldier Enabling the Future

Present
- heavy, single-purpose,
non-integrated equipment

- integrated, multi-functional protective suite

The Key is Lightweight, Compact Power

Specific Energy (Wh/kg)

SOURCE	SPECIFIC ENERGY	SPECIFIC ENERGY
	(Theoretical)	(Practical)
Springs (watch)	0.25	0.15
Rechargeable		
Batteries	<1200	35-200
Primary Li/SO ₂	1,400	175
Primary Li/SOCl ₂	1,400	300
Zinc/air		300-400
TNT	1,400	N/A (M61 HG~260Wh)
Methanol	6,200	1,500-3,100
Ammonia	8,900 Energy	1,000-4,000
Carbon	9,100 of	2,000-4,000
Diesel (JP-8 similar)	13,200 Combustion	1,320-5,000
Hydrogen	33,000	1,000-17,000
Nuclear	2,800,000	190,000

Heat Engine vs Electrochemistry

Liquid Fuels
High Energy Density

Higher Temperature
Lower Efficiency
Minimal Fuel Processing
Can burn impurities
Good infrastructure

Combustion/Heat Engines

About 30-35% efficient (full power)

Lower Temperature
Higher Efficiency?
Large Fuel Processor
for many fuels (JP-8)
Sensitive to impurities
Little infrastructure

Electrochem/Fuel Cells

About 70% (reformer) X 50% (Fuel Cell) = 30-35% eff

Examples in H₂/Air fuel cell evolution

- 1992 Analytic Power SBIR:
- 15 W (on a good day)
- No fuel included
- 5 pounds
- Short life
- Analytic Power now produces much better stacks

- 1996 H-Power -DARPA/ARO:
- 40 W sustained
- 90 Wh of stored hydrogen
- 3.5 pounds
- Starts/runs reliably after 6+ yrs
- Stack is used in commercial products
- H-Power doesn't exist anymore

Relative Energy Density

- <u>2001?- Ball Aerospace -</u>
- PM Soldier? / DARPA / CECOM / ARO:
- Concept based on available technology
- 15 W sustained, 25 W peak
- 400 Wh of generated hydrogen in 1 pound fuel canister
- 2.2 pounds

The big challenge is the hydrogen fuel supply

Microturbines

Concept:

- µFab of refractory ceramics enables µheat engines (includes cooling units)
- Power densities approach those of full-sized engines
- Cost very low given sufficient demand
- µEngines enabling technology for

Payoffew concepts

		<u>µturbogen+fu</u>	<u>iel BA5590</u>
•	Power	50 W	50 W
•	Energy	175 W-hr	175 W-hr
•	Weight	50 g	1000 g
•	Size	50 cc	880 cc

Accomplishments:

- Wafer scale fabrication demonstrated
- Cooled Si high temp structural material
- Studies plus experiment suggests HC fuels can be burned in microcombustor
- Microbearings spun at 1.4M RPM
- 6-layer hot structures fabricated and tested

MURI/DARPA/ARL

MIT/ARO Demo Microturbine

Motor/Generator

Turbomachinery

Electrical & Fluidic Interconnects

"Micro" Combustion Swing Engine

(Werner Dahm, wdahm@umich.edu)

- Power generation systems based on small internal combustion engines with integrated generators:
 - Comparatively low fixed mass (high specific power)
 - Moderate thermal efficiencies (currently 8%; expected by end of program >17%)
 - Fuel flexible operation (butane/propane, JP-8,etc.)

Micro Internal Combustion Swing Engine (MICSE)

Major Progress Areas

MICSE Generator Subsystem

MICSE Engine Core

Ignition Subsystem

Fuel Subsystem

Technical Challenges/Opportunities

High-Temperature Materials

Refractory material microfabrication (SiC, Si₃N₄, Al₂O₃, ???) High temperature electrical properties for electromechanical components

- Electromechanics: decoupling of electrical and fluid performance
- MEMS tribology: very high speed bearings and drive trains, stiction
- Fluid mechanics
 Diffusion at low Reynolds numbers
 Flow turning with micro-fab constraints
- Combustion: Catalytic combustion of liquid fuels
- Diagnostic tool development
- Wafer-Scale Precision Microfabrication
- Packaging of small high temperature systems

200 W microcombustor operating at 1600°K

Vehicle Propulsion Research: Enabling the Army Transformation

M1 - Abrams Tank 70 tons

FCS Platform 20 tons

Future Combat System Drivers Shrink the Logistics Burden

Typical Armored Division (6 x 4 x 2)*

<u>Item</u>	Number	Short Tons
Tracked vehicles	1,895	51,352
Trucks	3,031	23,913
Trailers	1,627	4,206
Aircraft	127	566
Equipment		5,600
Subtotal		85,637
30 day sustainment		104,970

^{* 17,000} personnel, TOE 87000J430, 6 armored battalions, 4 infantry battalions, 2 aviation battalions

^{*} A heavy division consumes more than its own weight every 30 days

^{* 60%} fuel, 30% ammo

^{*} Combat vehicles are 56% of the weight and consume 73% of the fuel

Propulsion System Analysis

- the key to true high power density

TACOM Blue Ribbon Study, November 1995

Figure 1-1. Volume reductions achievable by using high power density propulsion systems

Army Transformation for Future Army Propulsion

High Power Density

- Engine
 - High BMEP
 - Maximum air utilization
 - Near stoichiometric
 - High RPM

- System
 - Minimum propulsion system volume
 - Fuel, air handling, accessories

High Fuel Efficiency

- Low SFC engines
- Hybrid Systems

High Reliability

- Advanced diagnostics/prognostics

Reduced Logistics/Maintenance

The development of a validated computational capability for the analysis and design of reciprocating engines

Enhanced capabilities to analyze:

- Engine intake flow
- In-cylinder turbulent flow
- Fuel injection injector -> nozzle -> spray
- Liquid spray-wall interaction
- Ignition/combustion dynamics
- Pollutant formation/destruction
- Heat transfer

Which can then be used for model-based analysis of engine optimization and performance envelope determination

Fuel Injection Tailoring

Multi-Pulse Injection

Multi-Pulse Injection Results

Particulate vs. NOx 75% Load

PAYOFF

[S1]

[D5]

[D6]

[D7]

[8**D**]

- High efficiency, Low emissions
- Wider range of engine operation
 - -- higher power density
 - -- lower, stable idle rpm

Exploration of Strategies for High Power Density

High Power Density

50% increased fueling rate

NOx and Soot with MICS-3 comparable to baseline engine at standard fueling rate

High RPM Operation

Analytical results guide selection of appropriate strategies

Weapons Propulsion

Nano-Scale Energetic Materials

6.1 Strategic Research Objective:

Insensitive High-Energy Materials

Advanced

Energetic

Materials

Characteristics

 Major research theme to achieve significant advancement

"Systems engineering" at the 6.1 level

- High payoff potential for future Army applications
- Stable, sustained investment for longterm (5-10 years) to achieve technology enablement

Coordinated through the National Advanced Energetics Program

ENIAC Digital Computer
-BRL Ballistic Firing Tables

DOD High-Performance Computing – MSRC Designer Energetic Materials & Full-Spectrum Modeling

Program Thrusts

Novel Applications of Nanostructures to Propellants Theoretical Analysis & Modeling

- Structure
- Reactivity/Sensitivity

High Rate Synthesis

- Plasma condensation, SolGel, Novel Structures, ? Characterization
 - In-situ, post-production

Nanoenergetics Initiatives

National Nanotechnology Initiative

- DURINT (Defense University Research Initiative in Nanotechnology)
 - Nano-Systems Energetics (U. Minnesota)

Multidisciplinary University Research Initiative

- MURI 2004 - Nanoengineered Energetic Materials (Penn. State U. - start June 2004)

Conventional vs. Nanoscale Propellants

Combustion Characteristics of Conventional Propellants Governed by Characteristics of Composite Formulations:

- > Multi-scale, Multi-component: Particulates plus binder
- > Particulate size distributions lead to local non-uniformity and clustering of smaller components
- > Significant agglomeration of aluminum (if present) prior to ignition
- > Rate of Reaction limited by species and thermal diffusivity

A Novel Approach to Propellants Might Have:

- > Reduced size dispersion
- > Greater uniformity
- > Reduce agglomeration of aluminum
- > Higher reaction rates

A Radical Approach to Propellants Might Have:

> Controllable energy release

NANOSCALE ENERGETIC MATERIALS MAY BE THE PATHWAY TO ADVANCED ENERGETIC MATERIALS

Approaches to Nanoenergetics

1st Generation (pre 2000)

- Nanometer-sized Al powder/conventional propellants
 - Some performance gain, variable results

CL-20/NC Cryogel

(DURINT - Brill, U. Del.)

2nd Generation (current efforts)

- Coated nanometer-sized metal powders
 - Controlled oxidation, improved storage lifetime
- Quasi-ordered nanometer-sized inclusions in energetic matrix
 - Cryo-Gel/Sol-Gel processing

Self-Assembled Energetic Materials

3rd Generation (new MURI program)

- 3-dimensional nanoenergetics
 - Structured/ordered
 - Controlled reactivity
 - Improved manufacturability/processing

Size-dependent Oxidation of Al Nanoparticles

DURINT - M. Zachariah, U. Maryland

Particle produced in DC Plasma Discharge

First Measurement of Size Dependent Reaction Kinetics.

Encapsulation of Al in Fe₂O₃ matrix

DURINT - M. Zachariah, U. Maryland

Aerosol - plus - Sol Gel Chemistry for creation of novel Nanostructures

- Difficult to match time scales of drying and coagulation.
- Can not tell from TEM if Al is inside the oxidizer particle, because Al is lighter.
- STEM elemental map shows Al particle embedded in oxidizer

STEM elemental map of coagulated nanoparticle

Reactivity of Al in Fe₂O₃ matrix

DURINT - M. Zachariah, U. Maryland

Ordered Nanoparticles Exhibit 10 X Energy Release Rate (Power)

Summary

Army research in energy conversion is addressing key challenges;

Compact Power for the Dismounted Soldier High Performance/Efficiency Vehicle Propulsion Advanced Energetic Materials

Army research couples extramural academic and industrial programs with in-house capabilities

Army research is laying the foundation for the Army's future systems.